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ABSTRACT

This paper examines the power of different nonrigid registration
models to detect changes in tensor based morphometry (TBM), and
their stability when no real changes are present. Specifically, we
investigate an asymmetric version of a recently proposed unbiased
registration method, using mutual information as the matching crite-
rion. We compare matching functionals (sum of squared differences
and mutual information), as well as large deformation registration
schemes (viscous fluid registration versus symmetric and asymmet-
ric unbiased registration) for detecting changes in serial MRI scans
of 10 elderly normal subjects and 10 patients with Alzheimer’s
Disease scanned at 2-week and 1-year intervals. We demonstrated
that the unbiased methods, both symmetric and asymmetric, have
higher reproducibility. The unbiased methods were also less likely
to detect changes in the absence of any real physiological change.
Moreover, they measured biological deformations more accurately
by penalizing bias in the corresponding statistical maps.

Index Terms— Mutual information, image registration.

1. INTRODUCTION

In recent years, computational neuroimaging has become an excit-
ing interdisciplinary field with many applications in functional and
anatomic brain mapping, image-guided surgery, and multimodality
image fusion. In this paper, we introduce a novel Asymmetric Unbi-
ased model (by contrast with the Symmetric Unbiased model) and,
for the first time, we analyze unbiased models with mutual informa-
tion based matching functionals (prior work has focused on the case
where the summed squared intensity difference is used as the crite-
rion for registration). Most importantly, we aim to provide quality
calibrations for different non-rigid registration techniques in TBM.
In particular, we compare two common matching functionals: L2,
or the sum of squared intensity differences, versus mutual infor-
mation, and three regularization techniques (fluid registration ver-
sus the Asymmetric Unbiased and Symmetric Unbiased techniques).
Our experiments are designed to decide which registration method is
more reproducible, more reliable, and offers less artifactual variabil-
ity in regions of homogeneous image intensity. The foundation of
our calibrations is based on the assumption that, by scanning healthy
normal human subjects twice over a 2-week period using the same
protocol, serial MRI scan pairs should not show any systematic bi-
ological change. Therefore, any regional structural differences de-
tected using TBM over such a short interval may be assumed to be
errors. We apply statistical analysis to the profile of these errors,
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providing information on the reliability, reproducibility and vari-
ability of different registration techniques. Moreover, serial images
of 10 subjects from the ADNI follow-up phase (images acquired
one year apart) were analyzed in a similar fashion and compared
to the ADNI baseline data. In images collected one year apart, real
anatomical changes are present; neurobiological changes due to ag-
ing and dementia include widespread cell shrinkage, regional gray
and white matter atrophy and expansion of fluid-filled spaces in the
brain. Thus, a good computational technique should be able to dif-
ferentiate between longitudinal image pairs collected for the ADNI
baseline (2-week) and follow-up (1-year) phases.

2. UNBIASED IMAGE REGISTRATION

Let Ω be an open and bounded domain in R
n, for arbitrary n. With-

out loss of generality, assume that the volume of Ω is 1, i.e. |Ω| = 1.
Let I1, I2 : Ω → R be the two images to be registered. We seek to
find the transformation g : Ω → Ω that maps the source image I2

into correspondence with the target image I1. In this paper, we will
restrict this mapping to be differentiable, one-to-one, and onto. We
denote the Jacobian matrix of a deformation g to be Dg, with Jaco-
bian denoted by |Dg(x)|. The displacement field u(x) from the po-
sition x in the deformed image I2 ◦ g(x) back to I2(x) is defined in
terms of the deformation g(x) by the expression g(x) = x− u(x).

We now describe the construction of the Unbiased Large-
Deformation Image Registration. We associate three probability
density functions (PDFs) to g, g−1, and the identity mapping id:
Pg(x) = |Dg(x)|, Pg−1(x) = |Dg−1(x)|, Pid(x) = 1. By asso-
ciating deformations with their corresponding global density maps,
we can now apply information theory to quantify the magnitude
of deformations. In our approach, we choose the Kullback-Leibler
(KL) divergence and symmetric Kullback-Leibler (SKL) distance.
The KL divergence between two probability density functions, X
and Y , is defined as KL(X, Y ) =

∫
Ω

X log X/Y dx ≥ 0. We de-
fine the SKL distance as SKL(X, Y ) = KL(X, Y ) + KL(Y, X).
The Unbiased method solves for the deformation g (or, equivalently,
for the displacement u) minimizing the energy functional E, consist-
ing of the image matching term F and the regularizing term R which
is based on KL divergence or SKL distance. The general minimiza-
tion problem can be written as: infu

{
E(u) = F (u) + λR(u)

}
.

Here, λ > 0 is a weighting parameter.
To quantify the magnitude of deformation g, in this paper we

introduce a new regularization term RKL, which is an asymmetric
measure between Pid and Pg: RKL(g) = KL(Pid, Pg). This reg-
ularization term can be shown to be

RKL(g) =

∫

Ω

Pid log
Pid

Pg
dx =

∫

Ω

− log |Dg(x)|dx. (1)
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Fig. 1. Nonrigid registration was performed on an image pair of one
of the subjects from the ADNI baseline study (serial MRI images
acquired two weeks apart). Jacobian maps of deformations from
time 2 to time 1 (column 1) and time 1 to time 2 (column 2) are
superimposed on the target volumes. The unbiased methods gen-
erate less noisy Jacobian maps with values closer to 1; this shows
the greater stability of the approach when no volumetric change is
present. Column 3 examines the inverse consistency of deformation
models. Products of Jacobian maps are shown for the forward and
backward directions. For the unbiased methods, the products of the
Jacobian maps are less noisy, with values closer to 1, showing better
inverse consistency.
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Fig. 2. Nonrigid registration was performed on the ADNI baseline
study (serial MRI images acquired two weeks apart) of ten normal
elderly subjects. For each method, the mean of the resulting 10 Ja-
cobian maps is superimposed on one of the brain volumes. Visually,
Fluid registration generates noisy mean maps, while maps generated
using the Asymmetric Unbiased and Symmetric Unbiased methods
are less noisy with values closer to 1.

The regularization functional based on the symmetric KL dis-
tance between Pid and Pg is RSKL(g) = SKL(Pid, Pg). As
shown in [1, 2], the regularization term is linked to statistics on Ja-
cobian maps as follows

RSKL(g) =

∫

Ω

(|Dg(x)| − 1
)
log |Dg(x)|dx. (2)

Notice that the symmetric unbiased regularizing functional is point-
wise nonnegative, while the asymmetric unbiased regularizer in (1)
can take either positive or negative values locally.

3. FIDELITY METRICS

In this paper, the matching functional F takes two forms: the L2-
norm (the sum of squared differences) and MI (mutual information).
The L2 distance between the deformed image I2◦g(x) = I2(x−u)

and image I1(x) is FL2(u) = 1
2

∫
Ω

(
I2(x − u) − I1(x)

)2
dx.

To define the mutual information between the deformed image
I2(x−u) and the target image I1(x), we denote by pI1 and pI2

u the
intensity distributions estimated from I1(x) and I2(x − u), respec-
tively. An estimate of their joint intensity distribution is denoted as
pI1,I2
u . We also let i1 = I1(x), i2 = I2(x − u(x)) denote intensity

values at point x ∈ Ω. Given the displacement field u, the mutual
information computed from I1 and I2 is provided by

MII1,I2
u =

∫

R2
pI1,I2
u (i1, i2) log

pI1,I2
u (i1, i2)

pI1(i1)p
I2
u (i2)

di1di2. (3)

We seek to maximize MII1,I2
u , or minimize FMI(u) = −MII1,I2

u .

4. MINIMIZATION OF ENERGY FUNCTIONALS

In general, we expect minimizers of the energy functional E(u) to
exist. Computing the first variation of this functional, we obtain
the gradient of E(u), namely ∂uE(u). We define the force field
f , which drives I2 into registration with I1, as

f(x,u) = ∂uE(u) = ∂uF (u) + λ∂uR(u). (4)
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Fig. 3. Voxel-wise paired t test for the deviation gain S empirically
thresholded at 2.82 (p = 0.005 on the voxel level with 9 degrees
of freedom), showing where Asymmetric Unbiased and Symmetric
Unbiased registration outperform Fluid registration (regions in red)
with statistical significance on a voxel level.
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(a) L2-Fluid vs. L2-S.Unbiased (b) MI-Fluid vs. MI-S.Unbiased

Fig. 4. Multiple Comparison Analysis using permutation testing on
the deviation gain S of (a) L2-Fluid over L2-Sym.Unbiased and (b)
MI-Fluid over MI-Sym.Unbiased, both for ADNI baseline dataset.
Different colors signify minimum, average, and maximum percent-
age of voxels with p < 0.05. The result indicates that unbiased reg-
ularization technique outperforms Fluid methods with p < 0.001.

Here, R(u) is either RKL(u) or RSKL(u). We minimize E(u)
using the fluid flow proposed in [3]. Given the velocity field v, the
following partial differential equation can be solved for u:

∂u/∂τ = v − v · ∇u. (5)

The instantaneous velocity as in [4] is obtained by convolving f with
Gaussian kernel Gσ of variance σ2, v = Gσ ∗ (−f(x,u)).

To avoid possible confusion, we summarize the methods we will
be referring to in our subsequent analyses. In later discussions, min-
imization of the following energies

E(u) = FL2(u) + λRKL(u), (6)

E(u) = FL2(u) + λRSKL(u) (7)

using equations (4), (5) will be referred to as L2-Asymmetric Unbi-
ased and L2-Symmetric Unbiased models, respectively. The model
above, provided λ = 0, will be referred to as the L2-Fluid model.

Similarly, minimization of

E(u) = FMI(u) + λRKL(u), (8)

E(u) = FMI(u) + λRSKL(u) (9)

will be referred to as the MI-Asymmetric Unbiased and MI-
Symmetric Unbiased models, respectively. Such models, with
λ = 0, define the MI-Fluid model.

5. STATISTICAL ANALYSIS

5.1. Voxel-wise t test

Based on the authors’ approach in [2], we observe that, given that
there is no systematic structural change within two weeks, any devi-
ation of the Jacobian map from one should be considered error. Thus,

we expect that a better registration technique would yield log |Dg|
values closer to 0 (i.e., smaller log Jacobian deviation translates into
better methodology). Mathematically speaking, one way to test the
performance is to consider the deviation map dev of the logarithmi-
cally transformed Jacobian away from zero, defined at each voxel as
dev(x) = | log |Dg(x)||. For two different registration methods A
and B, we define the voxel-wise deviation gain of A over B (denoted
by SA,B) as SA,B(x) = devA(x) − devB(x).

For the ADNI baseline dataset, we perform a group paired t test
across subjects, by computing a voxel-wise t-map of deviation gains.
In order to statistically compare the performance of two registration
methods, we rely on the standard t test on the voxel mean of S.
To construct a suitable null hypothesis, we notice that the following
relation would hold, assuming B outperforms A: SA,B > 0. Thus,
the null hypothesis in this case would be testing if the mean deviation
gain is zero: H0 : μSA,B = 0. To determine the ranking of A and B,
we have to consider one-sided alternative hypotheses. For example,
when testing if B outperforms A, we use the following alternative
hypothesis: H1 : μSA,B > 0.

For both the ADNI follow-up and baseline datasets, we create
a voxel-wise t map using the local log Jacobian values of the ten
subjects, allowing us to test the validity of the zero mean assumption.

5.2. Permutation Testing to Correct Multiple Comparisons

To determine the overall global effects of different registration meth-
ods on the deviation of log Jacobian maps throughout the brain, we
performed permutation tests to adjust for multiple comparisons. Fol-
lowing the analyses in [5], we resampled the observations by ran-
domly flipping the sign of SA,B

i (i = 1, 2, ..., n) under the null hy-
pothesis. For each permutation, voxelwise t tests are computed. We
then compute the percentage of voxels inside the chosen ROI (in this
case the ICBM mask) with T statistics exceeding a certain threshold.
The multiple comparisons- corrected p value may be determined by
counting the number of permutations whose above-defined percent-
age exceeds that of the un-permuted observed data. For example,
we say that sequence B outperforms A on the whole brain if this
corrected p value is smaller than 0.05 (that is, less than 5% of all
permutations have the above-defined percentage greater than that of
the original data). All possible (210 = 1024) permutations were
considered in determining the final corrected p value.

To visually assess the global significance level of the voxel-wise
t tests on deviation gains and log-Jacobian values, we also employed
the cumulative distribution function (CDF) plot. In brief, we plot
observed cumulative probabilities against the theoretical distribution
under the null hypothesis. In the case of deviation gains S of a worse
technique A over a better technique B in the ADNI baseline data,
we expect a CDF curve to lie above the Null line, in the sense that a
better technique exhibits less systematic changes. In the case of log-
Jacobian values, a better registration technique, on the other hand,
should be able to separate the CDF curves between ADNI baseline
and follow-up phases.

6. RESULTS

In this section, we tested the Asymmetric Unbiased and Symmetric
Unbiased models and compared the results to those obtained using
the Fluid registration model [3, 4]. Of note, both Asymmetric Un-
biased and Symmetric Unbiased methods performed equally well.
For each regularization technique, we employed both L2 and mutual
information matching functionals (see (6)-(9)). In order to obtain a
fair comparison, re-gridding was not employed.
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Fig. 5. Cumulative distribution of p-values for the deviation gain
S of L2-Fluid over L2-Symmetric Unbiased and MI-Fluid over MI-
Symmetric Unbiased. Here, the ADNI baseline dataset is used. In
both figures, the CDF line is well above the Null line (y = x), indi-
cating that symmetric unbiased method outperforms Fluid method.

First, nonlinear registration was performed on the ADNI base-
line dataset (each scan is 128 by 160 by 128). Here, we compared
Fluid, Asymmetric Unbiased, and Symmetric Unbiased methods
coupled with both L2 and mutual information matching (λ = 500
and λ = 1000 for L2-Symmetric Unbiased and L2-Asymmetric
Unbiased algorithms; λ = 5 and λ = 10 for MI-Symmetric Unbi-
ased and MI-Asymmetric Unbiased methods, respectively). Since
the Asymmetric Unbiased model quantifies only the forward defor-
mation, the weight of the corresponding regularization functional is
half the magnitude of that of the Symmetric Unbiased model, and
hence, a weighting parameter twice as large should be used.

Figure 1 shows the results of registering a pair of serial MRI im-
ages for one of the subjects. The deformation was computed in both
directions (time 2 to time 1, and time 1 to time 2) using all three reg-
ularization methods based on L2 and mutual information matching.
Results indicate the Asymmetric Unbiased and Symmetric Unbiased
methods outperform Fluid method, generating more stable inverse
consistent maps [6] with less variability.

Figure 2 shows the mean Jacobian maps of ten subjects obtained
using Fluid, Asymmetric Unbiased, and Symmetric Unbiased reg-
istration algorithms coupled with both L2 and mutual information
matching. Jacobian maps generated using unbiased models have val-
ues closer to 1, whereas Fluid model generated noisy mean maps.
Figures 3 and 4 demonstrate the Unbiased regularization technique
outperforming Fluid registration with statistical significance.

To emphasize the differences between the distributions of log Ja-
cobian values for Fluid and unbiased methods, in Figure 5, we plot-
ted the cumulative distribution function of the p-values in deviation
gains (SA,B). For a null distribution, this cumulative plot falls along
the line y = x. Larger upward inflections of the CDF curve near the
origin are associated with significant deviation gains, indicating that
the unbiased technique outperforms Fluid method in being less likely
to exhibit structural changes in the absence of systematic biological
changes.

Second, we analyzed the ADNI follow-up phase dataset (each
scan is 220 by 220 by 220). As the images are now one year apart,
real anatomical changes are present, which enables the comparison
of methods in the presence of biological changes. In Figure 6 we ob-
serve the Fluid method generating noisy mean Jacobian maps, while
maps generated using unbiased methods suggest a volume reduction
in gray matter as well as ventricular enlargement. Figure 7 displays
the cumulative distribution of p-values for the voxel-wise log Jaco-
bian t-maps for both ADNI baseline and follow-up datasets. We
expect a better method to separate these two CDF curves, indicat-
ing that a real biological change has occurred between the two time

L2-Fluid L2-Asym.Unbiased L2-Sym.Unbiased

MI-Fluid MI-Asym.Unbiased MI-Sym.Unbiased

Fig. 6. Nonrigid registration was performed on the ADNI follow-
up study (serial MRI images acquired 12 months apart). For each
method, the mean of the resulting 10 Jacobian maps is superimposed
on one of the brain volumes. Fluid registration generates noisy mean
maps, while maps generated using unbiased methods suggest a vol-
ume reduction in gray matter as well as ventricular enlargement.
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Fig. 7. Cumulative distribution of p-values for the voxelwise log
Jacobian t-maps for both ADNI baseline (in blue) and follow-up (in
green) using L2-Fluid and L2-Symmetric Unbiased methods. Here,
a better method should separate these two CDF plots (see Section
5.2) with the Null line in between, indicating a real biological change
has occurred between these two time points.

points. A greater separation is accomplished when Symmetric Un-
biased method is used, while the Fluid method does not differentiate
between the two datasets.
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